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Abstract' 
In this paper, we survey algorithms that allocate a 

parallel program represented by an edge-weighted directed 
acyclic graph (DAG), also called a task graph or macro- 
dataflow graph, to a set of homogeneous processors, with 
the objective of minimizing the completion time. We 
analyze 21 such algorithms and classify them into four 
groups. The first group includes algorithms that schedule 
the DAG to a bounded number of processors directly. 
These algorithms ;we called the bounded number of 
processors (€3") scheduling algorithms. The algorithms 
in the second group schedule the DAG to an unbounded 
number of clusters and are called the unbounded number 
of clusters (UNC) scheduling algorithms. The algorithms 
in the third group schedule the DAG usingtask duplication 
and are called the task duplication based (TDB) scheduling 
algorithms. The algorithms in the fourth group perform 
allocation and mapjping on arbitrary processor network 
topologies. These algorithms are called the arbitrary 
processor network (APN) scheduling algorithms. The 
design philosophies and principles behind these 
algorithms are discussed, and the performance of all of the 
algorithms is evaluated and compared against each other 
on a unified basis by using various scheduling parameters. 
Keywords: Algorithms, Multiprocessors, Parallel 
Processing, Software, Task Graphs. 
1 Introduction 

Given an edge-weighted directed acyclic graph 
(DAG), also called al task graph or macro-dataflow graph, 
the problem of scheduling it to a set of homogeneous 
processors to minimize the completion time has intrigued 
researchers since the: advent of parallel computers. Since, 
the problem has been identified as NP-complete in its 
general forms [IO], and polynomial time solutions are 
known only in a few restricted cases [7], research effort in 
this area has resulted in a myriad of heuristic algorithms 
[5 ] ,  [21]. While each heuristic individually seems to be 
efficient, a plethora of research has ensued a number of 
questions: how effective are these algorithms? how 
sensitive are they to various scheduling parameters? how 
do they compare against each other on a unified basis? 
what are the most effective performance measures? how to 
classify various algorithms? . and what possible 
improvements can be made for a better performance? In 
this paper we try to answer some of these questions by 
examining a number of recently proposed algorithms. We 
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start by classifying these algorithms into the following 
four groups: 

Bounded Number of Processors (BNP) scheduling: 
These algorithms schedule the DAG to a bounded 
number of processors directly. The processors are 
assumed to be fully-connected. 

8 Unbounded Number of Clusters (UNC) scheduling: 
These algorithms schedule the DAG to an unbounded 
number of clusters. The processors are assumed to be 
fully-connected. The technique employed by these 
algorithms is also called clustering. 

8 Task Duplication Based (TDB) scheduling: These 
algorithms also schedule the DAG to an unbounded 
number of clusters but employ task duplication 
technique to further reduce the completion time. 
Arbitrary Processor Network (APN) scheduling: 
These algorithms perform scheduling and mapping on 
the target architectures in which the processors are 
connected via a network of arbitrary topology. 
We discuss six BNP, five UNC, six TDB, and four 

APN scheduling algorithms. We analyze their design 
philosophies and characteristics, and assess their merits 
and deficiencies. The rest of this paper is organized as 
follows. In the next section, we describe the generic DAG 
model and discuss its variations and suitability to different 
situations. We describe the BNP scheduling algorithms in 
Section 3, and the UNC algorithms in Section 4. Section 5 
describes the TDB algorithms. The APN algorithms are 
discussed in Section 6. The performance results and 
comparisons are presented in Section 7, and Section 8 
concludes the paper. 
2 The DAG Model 

The DAG is a generic model of a parallel program 
consisting of a set of processes among which there are 
dependencies. Each process is an indivisible unit of 
execution, expressed by an atomic node. An atomic node 
has one or more inputs. When all inputs are available, the 
node is triggered to execute. After its execution, it 
generates its outputs. In this model, a set of v nodes 
{ n,,  n2, . .., n,} are connected by a set of e directed edges, 

each of which is denoted by (n i ,  nj)  , where n, is called the 
parent and nj is called the child. A node without parent is 
called an entry node and a node without child is called an 
exit node. The weight of a node, denoted by w (n i l  , is 
equal to the process execution time. Since each edge 
corresponds to a message transfer from one process to 
another, the weight of an edge, denoted by c (ni .  n j )  , is 
equal to the message transmission time. Thus, c (ni ,  nj) 
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becomes zero when n, and n, are scheduled to the same 
processor because intraprocessor communication time is 
negligible compared with the interprocessor 
communication time. 

NP Scheduling Algorithms 
Most BNP scheduling algorithms are based on the list 

scheduling technique [I], [12], [19], [21]. List scheduling 
is a class of scheduling heuristics in which the nodes are 
assigned priorities and placed in a list arranged in a 
descending order of priority. The node with a higher 
priority will be examined for scheduling before a node 
with a lower priority. If more than one node has the same 
priority, ties are broken using some method. 

The two main attributes for assigning priority are the t- 
leveE (top level) and 6-level (bottom level). The t-level of a 
node n, is the length of the longest path from an entry node 
to n, (excluding n,). Here, the length of a path is the sum of 
all the node and edge weights along the path. The t-level of 
n, highly correlates with n , ' ~  earliest start time, denoted by 
Ts(n , )  , which is determined after n, is scheduled to a 
processor. The b-level of a node n, is the length of the 
longest path from node n, to an exit node: The b-level of a 
node i s  bounded by the length of the critical path. A 
critical path (CP) of a DAG, is a path from an entry node 
to an exit node, whose length is the maximum. It should be 
noted that some BNP scheduling algorithms do not take 
into account the edge weights in computing the b-level. To 
distinguish such definition of b-level from the one we 
described above, we call it the static b-level. 

Different algorithms use the r-level and b-level in 
different ways. Some algorithms assign a higher priority to 
a node with a smaller t-level while some algorithms assign 
a higher priority to a node with a larger b-level. Still some 
algorithms assign a higher priority to a node with a larger 
(b-level - e-level). In general, scheduling in a descending 
order of 6-level tends to schedule critical path nodes first 
while scheduling in an ascending order of t-level tends to 
schedule nodes in a topological order. The composite 
attribute (b-level - t-level) is a compromise between the 
previous two cases. In the following, we discuss very 
briefly six BNP scheduling algorithms. The detailed steps 
ofthe algorithms are omitted due to space limitations. 

HLFET Algorithm. The HLFET (Highest Level First 
with Estimated Times) algorithm [ l ]  is one of the simplest 
list scheduling algorithms using static b-level as node 

thm. The ISH (Insertion Scheduling 
thm [14] uses a simple but effective idea 

of inserting nodes into holes created by the partial 
schedules. 

CP Algorithm. The MCP (Modified Critical Path) 
algorithm 1231 uses an attributedcalled ALAP time of a 
node as node priority. The ALAP times of the nodes on the 

Algorithm. The ETF (Earliest Time First) 
algorithm [33 computes, at each step, the earliest start 
times for all ready nodes and then selects the one with the 

smallest start time, which is computed by examining the 
start time of the node on all processors exhaustively. 

DLS Algorithm. The DLS (Dynamic Level 
Scheduling) algorithm [22] uses as node priority an 
attribute called dynamic level (DL) which is the difference 
between the static b-level of a node and its earliest start 
time on a processor. 

LAST Algorithm. The LAST algorithm [4] is not a list 
scheduling algorithm, and its main god is to minimize the 
overall communication. 
4 UNC Scheduling Algorithms 

The basic technique employed by the UNC scheduling 
algorithms is called clustering [5], [ l l ] ,  [12]. At the 
beginning of the scheduling process, each node is 
considered as a cluster. In the subsequent steps, two 
clusters are merged if the merging reduces the completion 
time. This merging procedure continues until no cluster 
can be merged. Usually, no backtracking is allowed in 
order to avoid formidable time complexity. 

The clustering strategy is particularly designed for 
DAGS with non-zero edge weights. If all edge weights are 
zero, the CP length of the original DAG gives the shortest 
completion time. The clustering process is so designed that 
when two clusters are merged and the weights of the edges 
across the two clusters are zeroed, the new CP length of the 
resulting DAG becomes shorter than the one before the 
merging. An optimal clustering results in a number of 
clusters such that the CP length of the clustered DAG 
cannot be further reduced. At this point, the completion 
time is minimized. In order to facilitate the subsequent 
cluster mapping step, the secondary goal of the UNC 
scheduling algorithms is to minimize the number of 
clusters. In the following, we discuss five UNC scheduling 
algorithms. In the discussion, we will use the term cluster 
and processor interchangeably since in the UNC 
scheduling algorithms, merging a single node cluster to 
another cluster is analogous to scheduling a node to a 
processor. 

EZ Algorithm. The EZ (Edge-zeroing) algorithm [20] 
selects clusters for merging based on edge weights. At 
each step, the algorithm zeros the edge with the largest 
weight. 

LC Algorithm. The LC (Linear Clustering) algorithm 
[13] iteratively merges nodes to form a single cluster based 
on the CP. The merged nodes are removed and the merging 
process repeats. 

DSC Algorithm. The DSC (Dominant Sequence 
Clustering) algorithm [24] is designed based on the 
Dominanr Sequence @S) of a graph. The DS is the CP of 
the partially scheduled DAG. A distinctive feature of the 
algorithm is that in order to lower the time complexity, the 
t-level of a node is computed incrementally and the b-level 
does not change until the node is scheduled. 

MD Algorithm. The MD (Mobility Directed) 
algorithm [23] selects a node ni for scheduling based on an 
attribute called the relative mobility, which is defined as: 

If a node is on the current CP of the partially scheduled 
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Cur-CP-Length - (b-level ( n i )  + t-level ( n i )  ) 

w (nil 
DAG, the sum of its b-level and t-level is equal to the 
current CP length. The MD algorithm scans from the 
earliest idle time sEot on each cluster and schedules the 
node into thefirst idle time slot that is large enough for the 
node. 

DCP Algorithm. The DCP (Dynamic Critical Path) 
algorithm [ 151 is designed based on the value of mobility, 
defined as: (Cur-CP-Length - (b-level ( n i )  + t-level ( ni) ) ) . 
The DCP algorithm uses a lookahead strategy to find a 
better cluster for a given node. In addition to computing 
the value of T, ( n i )  on a cluster, the DCP algorithm also 
computes the value of T, (n,) on the same cluster. Here, nc 
is the child of ni that has the largest communication and is 
called the critical child of ni. The DCP algorithm 
schedules ni to the cluster that gives the minimum value of 
the sum of these two attributes. 
5 TDB Scheduling Algorithms 

The TDB (Task Duplication Based) scheduling 
algorithms described below assume the availability of an 
unbounded number (of processors. The principal rationale 
behind the TDB scheduling algorithms is to reduce the 
communication overhead by redundantly allocating some 
tasks to multiple processors. In duplication-based 
scheduling, different strategies can be employed to select 
ancestor nodes for (duplication. Some of the algorithms 
duplicate only the direct predecessors whereas some other 
algorithms try to duplicate all possible ancestors. There is 
a trade-off between performance and time complexity of 
the algorithm. In the following, we describe six TDB 
scheduling algorithms. 

PY Algorithm. The PY algorithm (named after 
Papadimitriou and Yannakakis) [19] uses an attribute to 
approximate the absolute achievable lower bound of the 
start time of a node:. It is shown [19] that the schedule 
length generated is within a factor of 2 from the optimal. 

LWB Algorithm. We call the algorithm [8] the LWB 
(Lower Bound) algorithm based on its main procedure: it 
first determines the lower bound start time for each node, 
and then identifies a set of critical edges in the DAG. The 
paths containing the: critical edges are scheduled to the 
same processor. It is shown in [8], the LWB algorithm can 
generate optimal schedules for DAGS in which node 
weights are strictly larger than any edge weight. 

DSH Algorithm. The DSH (Duplication Scheduling 
Heuristic) algorithm [14] considers each node in a 
descending order of their priorities. The DSH algorithm 
first determines the start time of the node on the processor 
without duplication of any ancestor. Then, it considers the 
duplication in the idlle time period from the finish time of 
the last scheduled nolde on the processor and the start time 
of the node currently under consideration. 

BTDH Algorithm. The BTDH (Bottom-Up Top- 
Down Duplication Heuristic) algorithm [6] is essentially 
an extension of the DSH algorithm described above. The 
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major improvement of the BTDH algorithm over the DSH 
algorithm is that the algorithm keeps on duplicating 
ancestors of a node even if the duplication time slot is 
totally used up in the hope that the start time will 
eventually be minimized. 

LCTD Algorithm. The LCTD algorithm [5 ]  first 
constructs linear clusters and then identifies the edges 
among clusters that determines the completion time. It 
tries to duplicate the parents corresponding to these edges 
to the reduce the start times of some nodes in the clusters. 

CPFD Algorithm. The CPFD (Critical Path Fast 
Duplication) algorithm [2] is based on partitioning the 
DAG into three categories: critical path nodes (CPN), in- 
branch nodes (IBN) and out-branch nodes (OBN). An IBN 
is a node from which there is a path reaching a CPN. An 
OBN is a node which is neither a CPN nor an IBN. The 
main strength of the CPFD algorithm is that it tries to start 
each CPN as early as possible on a processor by 
recursively duplicating the IBNs (and also other CPNs) 
reaching it. 

6 APN Scheduling Algorithm 
The algorithms in this class take into account specific 

architectural features such as the number of processors as 
well as their interconnection topology. These algorithms 
can schedule tasks on the processors and messages on the 
network communication links. Scheduling of messages 
may be dependent on the routing strategy used by the 
underlying network. The mapping, including the temporal 
dependencies, is therefore implicit - without going 
through a separate clustering phase. There are not many 
reported algorithms that belong to this class. In the 
following, we discuss four such algorithms. 

MH Algorithm. The MH (Mapping Heuristic) 
algorithm [9] first assigns priorities by computing the 
static b-levels of all nodes. A ready node list is then 
initialized to contain all entry nodes ordered in decreasing 
priorities. Each node is scheduled to a processor that gives 
the smallest start time. 

DLS Algorithm. The DLS (Dynamic Level 
Scheduling) algorithm [22] described earlier can also be 
used as an APN scheduling algorithm. To use it as a APN 
scheduling algorithm, it requires the message routing 
method to be supplied by the user. 

BU Algorithm. The BU (Bottom-Up) algorithm [ 181 
first finds out the CP of the DAG and then assigns all the 
nodes on the CP to the same processor at once. Afterwards, 
the algorithm assigns the remaining nodes in a reversed 
topological order to the processors. The node assignment 
is guided by a load-balancing processor selection heuristic 
which attempts to balance the load across all given 
processors. 

BSA Algorithm. The BSA (Bubble Scheduling and 
Allocation) algorithm [ 161 constructs a schedule 
incrementally by first injecting all the nodes to the pivot 
processor, defined as the processor with the highest 
degree. Then, the algorithm tries to improve the start time 



of each node (hence “bubbling” up nodes) by migrating it 
to one of the adjacent processor of the pivot processor if 
the migration can improve the start time of the node. 
Essentially, after a node is migrated from pivot processor 
to another processor, not only the node itself is “bubbled 
up” but its successors as well. After all nodes on the pivot 
processor are considered, select the next processor in the 
processor list to be the new pivot processor. The process is 
repeated by changing the pivot processor in a breadth first 
order. 
7 Performance Results and Comparison 

In this section, we present the performance results and 
comparisons of the scheduling algorithms of all four 
classes described above. The algorithms were 
implemented on a SUN SPARC IPX workstation. The 
experimental results used a set of 250 random task graphs. 
Our main rationale for selecting random graphs as a test 
suite is that they contain as their subset a variety of graph 
structures. This avoids any bias that an algorithm may have 
towards a particular graph structure. Furthermore, random 
graphs have indeed been used extensively in previous 
studies on scheduling. For generating the complete set of 
250 graphs, we varied three parameters: size, 
communication-to-computation ratio (CCR) and 
parallelism. The size of the graph was varied from 50 to 
500 nodes with increments of 50. The weight of each node 
was randomly selected from a uniform distribution with 
mean equal to the specified average computation cost. The 
weight of each edge was also randomly selected from a 
uniform distribution with mean equal to the product of the 
average computation cost and the CCR. Five different 
values of CCR were selected: 0.1, 0.5, 1.0, 2.0 and 10.0. 
The parallelism parameter determined the average number 
of children nodes for each node. Five different values of 
parallelism were chosen: 1, 2, 3, 4 and 5. The algorithms 
were compared within their own class, although some 
comparison of UNC and BNP algorithms was also carried 
out. The comparisons were made using the following six 
measures. 

0 Normalized Schedule Length (NSL): Schedule 
length is the prime performance measure of a 
scheduling algorithm. The NSL of an algorithm is 
obtained by dividing the schedule length produced by 
the algorithm to the lower bound (defined as the sum 
of weights of the nodes on the original critical-path). It 
should be noted that the lower bound may not always 
be possible to achieve, and the optimal schedule 
length may be larger than this bound. 
Pair-Wise and Global Comparisons: In the pair- 
wise comparison, we measured the number of times an 
algorithm produced better, worse or equal schedule 
length compared to each other algorithm within the 
same class. In the global comparison, an algorithm 
was collectively compared with all other algorithms in 
the same class. 

est Solutions: For each of the 250 graphs, we simply 
counted the number of times an algorithm produced 

the shortest schedule length compared to other 
algorithms. 

7.1 Comparing the NSLs 
The normalized schedule lengths (NSL) for all of the 

algorithms are given in Figure 1. Each bar in this figure is 
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Figure 1: The average normalized schedule lengths 
produced by various scheduling algorithms. 

the average of 25 tests cases with various values of CCR 
and parallelism; the results showing the impact of CCR - 
and hence granularity - and parallelism are not included 
here due to space limitations. From Figure 1, we notice 
that behavior of these algorithms was consistent in terms 
of their relative performance for various number of nodes 
in the graph. Out of the BNP scheduling algorithms, the 
performance of the MCP algorithm was the best among all 
the algorithms. The LAST algorithm was outperformed by 
all other algorithms. 

For the UNC scheduling algorithms, we can observe 
that the DCP and MD algorithms performed significantly 
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better as compared to the rest of the algorithms. The values 
of NSL for the DSC and LC algorithms were closed. The 
E2 algorithm was outperformed by all other algorithms. 
The relatively inferior performance of the EZ algorithm 
indicates that clustering for the minimization of the 
communication alone is not enough for reducing the 
schedule length. This comparison also indicates that the 
critical-path algorithms are superior as compared to other 
algorithms. 

For the TDB scheduling algorithms, we can observe 
large variations in the performance of these algorithms. 
For example, CPFD was significantly better than the other 
algorithms. The performance of DSH and BTDH was 
close but much better than PY, LCTD and LWB. The 
NSLs produced by 1,WB were almost 50% larger than 
those of CPFD. These results also indicate that although 
the PY algorithm guarantees a schedule length within a 
factor of 2 from the optimal, much shorter schedule lengths 
are possible. 

Although the BNP algorithms are designed for limited 
number of processors (they take this number as a 
parameter), we ran each algorithm with a very large 
number of processors such that the number of processors 
became virtually unlimited. From this experiment, we 
noted the average number of processors used by these 
algorithms for each graph size (the numbers of processors 
used are omitted due to space limitations). In the next 
experiment, we reduced the number processors to 50% of 
that average. These results are shown in Figure 2. Here, no 
significant differences in the NSLs as well as the relative 
performance of these algorithms were observed. One 
possible reason for thiis behavior is that the schedule length 
is dominated by the scheduling of CP nodes. In the case of 
a very large number (of processors, the non-CP nodes are 
spread across many processors, while in the case of a fewer 
number of processors, these nodes are packed together 
without making much impact on the overall schedule 
length. 

Niumbrr o( Nodos 

Figure 2: The average normalized schedule lengths produced by the 
BNP scheduling algorithms for task graphs of various sizes given 
only 50% of the average number of processors. 

For the A€" scheduling algorithms, the target 
architectures included an 8-node ring, an %node 
hypercube, a 4 x 2 mesh, and 'an %node clique. The 
average values of these NSLs across all topologies are also 
depicted in Figure 1. One reason for the much larger NSLs 
in these cases is that !he numbers of processors used were 
much smaller. We deliberately used very small number of 
processors to make ithe experiments more realistic. For 

example, a 500-node task graph is scheduled to 8 
processors'. 

These results suggest that there can be substantial 
difference in the performance of these algorithms. For 
example, significant differences can be noticed between 
the NSLs of BSA and BU. The performance of DLS was 
relatively stable with respect to the graph size while MH 
yielded fairly long schedule lengths for large graphs. As 
can be noticed, the BSA algorithm performed admirably 
well for large graphs. One of the main reasons for the 
better performance of BSA is an efficient scheduling of 
communication messages that can have a drastic impact on 
the overall schedule length. In terms of the impact of the 
topology, one can notice that all algorithms performed 
better on the networks with more communication links. 
7.2 Pair-Wise Comparison 

Next, we present a pair-wise and a global comparison 
among the algorithms by observing the number of times 
each algorithm performed better, worse or the same 
compared to every other algorithm in 250 test cases. This 
comparison for the BNP scheduling algorithms is given in 
a graphical form shown in Figure 3. Here, each box 
compares two algorithms -the algorithm on the left side 
and the algorithm on the top. Each box contains three 
numbers preceded by '>', '-6 and '=' signs which indicate 
the number of times the algorithm on the left performed 
better, worse, and the same, respectively, compared to the 
algorithm shown on the top. For example, the DLS 
algorithm performed better than the MCP algorithm in 66 
cases, worse in 162 cases and the same in 22 cases. For the 
global comparison, an additional box ("ALL") for each 
algorithm compares that algorithm with all other 
algorithms combined. Based on these results, we rank 
these BNP algorithms in the following order: MCP, ISH, 
DLS, HLFET, ETF, and LAST. This ranking essentially 
indicates the quality of scheduling based on how often an 
algorithm performs better than the others. Note, however, 
that a ranking of these algorithms based on NSLs shown in  
Figure 1 is different: MCP, DLS, ETF, ISH, HLFET, and 
LAST. This ranking indicates the quality of scheduling 
based on the average performance of the algorithm. An 
algorithm which outperforms other algorithms more 
frequently but has a lower rank based on the average NSL 
indicates that it produces long schedule lengths in some 
cases. 

The pair-wise and global comparison of UNC 
scheduling algorithms is depicted in Figure 4. These 
results clearly indicate that the DCP algorithm is better 
than all other algorithms. Both DCP and MD outperformed 
EZ and LC by a large margin while DSC was marginally 
better than LC. Based on these results, we rank these UNC 
algorithms in the following order: DCP, MD, DSC, LC, 
and EZ. Interestingly, this ranking does not change using 
the NSLs shown in Figure 1. 

I .  The number of processors used by a typical UNC algorithm is 
very large -the LC algorithm, for instance, uses more than 100 
processors for a 500-node task graph 
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Figure 3: A global comparison of the BNP scheduling 
algorithms in terms of better, worse and equal performance. 

t I 

Figure 4: A companson of the UNC scheduling algonthms 
i n  terms of better, worse and equal performance. 

In the pair-wise comparison for the TDB scheduling 
algorithms, shown in Figure 5, we notice that CPFD was 
better than all other algorithms by a large margin - it  was 
outperformed in only 5 cases. The unexpected result was 
the comparison of the LWB algorithm compared to other 
algorithms. Collectively, LWB was second only to the 
CPFD algorithm but, as shown above in Figure 1, its 
average performance was the worst. This is because it 
generates optimal solutions in many cases when CCR is 
small but becomes inefficient when CCR is larger than 1. 
Based on the results of Figure 1, these algorithms can be 
ranked in the order: CPFD, LWB, BTDH, DSH, LCTD 
and PY. Based on the results of Figure 5, we make the 
following ranking: CPFD, BTDH, DSH, PY, LCTD and 

Figure 5 A global companson of the TDB scheduling 
algonthms i n  terms of better, worse and equal performance 

I 

[su) 
Figure 6 A companson of the APN scheduling algonthms in 
terms of better, worse and equal performance across all topologies 

7.3 Best Performance 
Table 1 shows the number of times each algorithm 

yielded the best solution out of 250 test cases (for the AN€' 
scheduling algorithms, there were 1000 test cases). For the 
BNP scheduling algorithms, the MCP algorithm generated 
the best solution for 129 times - which is more than 50% 
of the number of test cases. In the category of the UNC 
scheduling algorithms, the DCP algorithm generated the 
best solution in about 90% of the cases. Similarly, in the 
category of TDB algorithms, the CPFD algorithm 
generated the best solution in almost all cases while, in the 
category of the ANP algorithms, the BSA algorithm 
generated the best solution in about 60% of the cases. The 
LAST, EZ, PY, and BU algorithms did not yield the best 
solut ion in  any s i n g l e  case. 

BNP Alg. UNC AI& TDB Alg. APN Alg. 

MCP 129 K P  225 CPFD 246 BSA 599 
algorithms shown in Figure 6, BSA outperformed the other ISH 101 Dsc 30 LWB 94 DLS 244 

HLFET7S MD 15 DSH 5 MH 59 
DLS 64 LC 7 BTDH 5 BU 0 

performed better than MH. The BU algorithm was El'F 18 E Z  0 L C T D 1  
LAST 0 PY 0 

LWB. 
In the pair-wise comparison of the APN scheduling 

three algorithms in a large number of cases while DLS 

outperformed by all other algorithms. In terms of 

BSA, DLS, MH, and BU. 
performance, these algorithms can be ranked in the order: Table 1: The number of times an algorithm 

produced the shortest schedule length. 
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8 Conclusions aind Future Work 
Our  study has revealed several important findings. For 

both the BNP and UNC classes, algorithms emphasizing 
the accurate scheduling of nodes on the critical-path are in 
general better than the other algorithms. Dynamic critical- 
path is better than static critical-path, as demonstrated by 
both the DCP and D S C  algorithms. Insertion is better than 
non-insertion-for example, a simple algorithm such as 
ISH employing insertion can yield dramatic performance. 
Dynamic priority is in general better than static priority, 
although it  can cause substantial complexity gain - for 
example the DLS and ETF algorithms have higher 
complexities. However, this is not always true - one 
exception, for example, is that the MCP algorithm using 
static priorities perfcirms the best in the BNP class. A BNP 
algorithm can be used as an UNC algorithm assuming 
infinite number of processors. However, BNP algorithms 
are designed for a bounded number of processors. BNP 
algorithms usually use b-level, t-level, or combination of 
both, as the criterion for selecting nodes to  schedule. UNC 
algorithms, on the other hand, usually use mobility as the 
major criteria. An UNC algorithm can be used for a 
bounded number of processors if the number of processors 
is not smaller than the number of clusters generated. 
Exploitation of other topological properties of the graph 
such as the concept of critical child used by the DCP 
algorithm can result in a dramatic improvement in 
schedule lengths. Low complexity algorithms such as DSC 
and LC can outperform some of the higher complexity 
algorithms. The  APN algorithms can be  fairly complicated 
because they take into account more parameters. Further 
research is required in this area. The  effects of topology 
and routing strategy need to  be  determined. 

A number of research prototypes have been designed 
and implemented, showing good performance on a group 
of carefully selected examples [9], [17]. The current 
researches concentrate on  further elaboration of various 
techniques, such as reducing the scheduling complexities, 
improving computation estimations, and incorporating 
network topology and communication traffic. 
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